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Nonstat ionary magnetic field problems in a moving conductor  are  of interest  in connection 
with obtaining pulsed magnetic fields by magnetic cumulation [1]. The field penet ra tes  into 
the conductor  as  a resul t  of the growth of the skin l ayer  and is c a r r i ed  along with the conduc-  
tor .  The f i rs t  mechanism of the interaction of a field with a conductor  is cal led the diffusion 
of the field, and the second convection. Five se l f - s imi la r  solutions of magnetic field problems 
in a conductor  which has a veloci ty  v = q / 2  ~ r and a conductivity a =coas t  are  d iscussed  and 
a numerica l  solution of the problem of the compress ion  of a field in a cyl indrical  cavi ty when 
the conductor  moves toward the axis is presented.  One of the se l f - s imi l a r  solutions is c o m -  
pared with the numerica l  solution. 

1. In the problems under discussion the magnetic field in a conductor  is descr ibed by the solution of 
the equation 

c20,B ( c, ) , OB OB = 0  (1.1) 
4n~ Or 2 -4- " ~ - - q  2nr Or Ot 

which sat isf ies the condition for the continuity of the field at the boundary of the conductor  r =r . ( t )  

B I . . . .  ---- B,  (t) (1.2) 

and the condition for the diffusion of the flux 

c~ ( OB rid), = ~ r 
dt Or ] . . . .  (1.3) 

which follows f rom Ohm~s law and the equations of the quas is ta t ionary  e lect romagnet ic  field. The field 
B .  (t) at the boundary of the conductor  is a ssumed  uniform but can depend on time, and 6 ,  (t) is the flux in 
a cyl inder  of radius r . ( t ) .  

Motion of the conductor  away f rom the axis co r responds  to q ~ 0, and motion toward the axis to q < 0. 
For  a steady source  strength the boundary of the conductor  is given by 

r ,  = (qta-x) ',, (1.4) 

The t ime t=0  co r re sponds  to the end of motion toward the axis and the beginning of motion away f rom 
the axis. Thus t > 0 in problems on the expansion of a conductor  and t < 0 for problems on compress ion .  

In cer ta in  problems it is convenient to introduce the flux in the moving conductor 

(a~+qti-t)t's 
O(a,  t) ~ 2n rB(r ,  t)dr (1.5) 
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, (a, t) = 2,~ ~ rB (r, t) dr 
(at-4-qt,~-')':" 

(1.6) 

instead of the field B (r, t). 

If the field on the axis does not increase  too rapidly (1.5) is used, and if the field and its derivat ives 
vanish at infinity (1.6) is used. The flux ~, r must satisfy the equation 

d~  c 2 OB de c~ OB 
r - -  = (1.7) dt 2z Or ' ,dr - -  ~ r Or 

If r O B / 0 r  --* 0 as r ~oo it follows f rom (1.7) that the flux is conserved  in an unbounded conductor 
((ha--. ~o = @0)- If the flux in the cavity is denoted by ~,(t) and the flux in the conductar  by ,I,,(t) the con-  
servation of total flux means that 

(P, (t) + ~ ,  (t) = q)o (1.8) 

In t rans forming  to the se l f - s imi la r  variable 

or  to the dimensionless var iables  

the dimensionless pa r ame te r  

x = ~r t (qt)- '  (1.9) 

- t I q[ (~ro=) - ' ,  p = r%-'  (1.10) 

= z ]  q[ c -~ ( i . i i )  

equal to half the magnetic Reynolds number appears  in all problems.  

2. If the expansion of the cyl indr ical  conductor begins at the ~txis two se l f - s imi l a r  problems can be 
formulated: the conductor expands in a static field B0; the conductor has a superconducting sheath and the 
flux in it is conserved.  In both problems the solution depends on the single dimensionless  var iablexdef ined 
by (1.9); on the boundary of the conductor x = l .  For  the expansion of a conducting cyl inder  in a static field 

B(x)  = Bo ( i ~ l e - ~ d ~  ) i ~ ' e - ~ - d ~  
0 0 

to be 

The field is zero  on the axis of the conductor.  

The c r o s s  section S of the conductor into which the field has penetrated is found f rom 

b ' .  1 

O 0 

0 

For large ~ the integral in (2.1) can be approximated by Laplace's method [2], and for small g by 
expanding the exponential in powers of iz~ 

S ~ mr,' (2~-'~-')v, (~ ~ t), 

S ~ r ,  s ( t - ~ )  ( ~ t )  

f rom which the depth of penetration of the field into the conductor is 

(2.1) 
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In the problem of the expansion of the cyl inder  in a superconducting sheath the flux and field are  
respect ively  

1 x 

0 0 
1 

B (x) = 2art OOOr = ~~ (ztr*g I ~e-lX~ d~)-X x'Ue-lZx 
O 

The field vanishes  on the axis and is maximum on the boundary of the conductor.  

The c r o s s  section of the conductor  occupied by the field is found f rom B , S =  4%, where 

1 

0 

is the field on the boundary of the conductor.  It is easy  to see that 

1 

0 

and the methods descr ibed ea r l i e r  give the es t imates  

B,  ~ r (ur.S) -1 (2n-ltt) '/' 

a ~ r,a'/, (81~)-'/, (it >> t) 
B ,  ~.~ 0o (~tr,~) -~ (1 + 2 -x p.) 
6 ~ r ,  ( t  - -  (2-' Ix)'/ ') (bt , ~  t) 

3. If the expansion begins f rom the axis two se l f - s imi l a r  problems in x can be formulated:  at the 
beginning the field in the conductor  was everywhere  static and equal to B0; at the beginning there  was no 
field in the conductor  and the flux ~0 was concent ra ted  on the axis. 

In the f i rs t  problem the field in the conductor  is 

B (x) =. Bo -- B,tte ,~ i ~-le-~ d~ 
x 

and the field in the cavi ty  

B . =  + i ' ,31,  
1 

is constant  in spite of the motion of the conductor.  

For  large g Lap lace ' s  method gives 

B, ~ Bo (2n-llx-') ':' (tt ~ t) 

Making the substitution g ~ =t in (3.1) leads to /~-kt [ 1 ~ ( g ) - T  (/~,/~)], and af ter  substituting the ex- 
pansions of the gamma function r (z) and the incomplete gamma function 3' (a, z) for ]z[ << 1 [31 we obtain 

B,  ~ Bo (1 + bt In it) (tt ~ t) 

Direct calculat ions show that the decrease  of the flux in the conductor  is equal to the flux in the 
cavity, i.e., 

2~ i r (B o -  B(r, t))dr = gr,2B, 
r .  

Thus the total flux is conserved  in this case .  

The c r o s s  section of the conductor  f rom which the flux passed into the cavity is found f rom the equa- 
tion S (B0-B , )  = r. r , 2 B , .  From this the thickness  of the cu r ren t  layer  on the surface of the expanding 
cavity is es t imated as 
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8 ~ 2-1r, B ,B0- '  ~ r , ( 2 ~ ) - ' : '  (~ ~ 1) 

8 ~ r ,  (B, (B 0 - -  B,)-I)  '/, ~ r ,  ( - -~ In ~)-,!, . (~ ~ t) 

The p r o b l e m  of the diffusion of  the flux f r o m  an expanding cav i ty  is d i s c u s s e d  in [4]. It t u r n s  out that  
not only is the  to ta l  f lux c o n s e r v e d ,  but for  v =q / (2  7r r) both the flux in the  cav i ty  and the flux in the  c o n d u c -  
t o r  a r e  cons tan t .  Thus  in the expansion of  a cav i ty  in a conduc to r  the f lux at the s t a r t  is r e d i s t r i b u t e d  b e -  
tween the cav i t y  and the conduc to r  and then does  not change.  

Ca lcu la t ions  fo r  the flux in the cav i ty  give 

~), ~ (~)o (i - -  (2-1~%1~-1) V') (1~ ~ t) 

The c r o s s  sec t ion  of  the c u r r e n t  l a y e r  at the edge of  the cav i ty  is 

S = ( r  - -  q ) , ) B , - '  = ~ r ,  ~ (q)o - -  ~ , ) O , - '  

and its t h i ckness  is 

~ r,n':, (81~)-'~, (~* > ~  t)  

8 = r,t~ -'~', (tL " ~  .t) 

4. 
In t roduc ing  the flux in the c o n d u c t o r  

~p (r,  t) = 2~ I r B  (r, t) dr  
r 

and a s s u m i n g  tha t  it can  be wr i t t en  in the f o r m  

Magnet ic  cumula t ion  d e s c r i b e s  the  p r o b l e m  of the c o m p r e s s i o n  of  the  f lux in a c y l i n d r i c a l  cavi ty .  

it is  e a s y  to  show that  
- f l  and g [5] 

satisfying the condi t ion 

r (r, t) = ( - t ) ~  ~ (z), 
z = l~x = a [ q I c-2grS (qt) -1  

(4. i) 

~0(z) mus t  be a solut ion o f  the  conf luent  h y p e r g e o m e t r i c  equat ion with the  p a r a m e t e r s  

z(~" .-{- (l~ - -  z)(p' -t- ~(P = 0 (4.2) 

gT' (~) = ~ (~) (4.3) 

on the boundary  of  the cav i ty  z = g .  

In de r iv ing  Eq. (4.2) it is a s s u m e d  that  the f ield van i shes  at infinity. T h e r e f o r e  of  the two l inea r ly  
independent  solut ions  of (4.2) we se lec t  the one whose  a sympto t i c  behav io r  at infinity is d e s c r i b e d  by a 
power  of z and d i s c a r d  the solut ion with the expotent ia l  a sympto t i c  behavior ,  i .e. ,  

(p (z) = A~F (--~, ~; z) (4.4) 
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where (a, c, z) is given by the integral [5] 

~F(a, c; z) = 1 i e - z tP- t ( t  " y - ~  -~ t) ~-~-1 dt, 
o 

1% a ~ 0 (4.5) 

The substitution of (4.4) into the boundary condition (4.3) and the t ransformat ions  connected with the 
change of p a r a m e t e r s  in ~ (a, c, z) leads to an equation for fl as  a function of 

( I - - ~ ) = ( 2 - - ' 6 - - F )  ~I'(2--~, F; ~) = [2 ( i - -~ ) z+ '6 ( l - - l $ - -F ) ]  ~I'( ! -~,  F; ~) (4.6) 

Using the previously described technique to estimate the integral (4.5) we obtain the asymptotic forms 

,6 ~.  (2~- 'p- ' ) ' ,  (tt ~ ,  l) (4.7) 

Equation (4.6) was solved on a Minsk-32 computer  for a r b i t r a r y  values of ~ .  The resul ts  of these 
calculat ions are  shown in Fig. 1. 

The solution shows that if at a t ime t o the radius of the cavi ty  was r 0 =(qt0/Tr)~/2 and the flux in it was 
~0, then at any other t ime t the flux in the cavi ty will be 

r  = Co (r,  ro-1) ~ = r  ( t to-1) ~ (4.8)  

and the field will be 

B,  = @0 (ar02)-'(r,ro-') ~(z-') 

Since 0 < p <- 1, in compress ion  ( r ,  - -  0) the flux passes  completely  into the conductor,  although the 
field in the cavity Inc reases  indefinitely; i.e., leakage of the flux cannot limit the value of the field obtained 
in the compress ion  of the flux in the cyl indr ical  cavity. 

It is c l ea r  f rom (4.7) and (4.8) that for  large # the flux in the cavi ty  dec reases  slowly at f i rs t  and only 
toward the end of the compress ion  dec reases  sharply to zero. The t ime t*  for the flux to escape,  and the 
c r i t i ca l  size of the cavi ty r*  can be es t imated f rom the condition 

d@. 1 @' dt t=t* -'~ to 

which combined with (4.8) gives 

t* ~- to'6 I1(1-~), 

For  large ~ it follows f rom (4.7) that 

T=I = == r o ~ ' / t ( t - ~ )  

t* ~ t o (2~-'F-1)',', (4.9) 

r* ~ r0 (2~ - '~ " ) "  (~ ~ 1) 

A considerat ion of the compress ion  of the flux in the cyl indr ical  cavi ty shows that up to the time t*  
the t r anspor t  of the field by the conductor predominates ,  and at la ter  s tages of the compress ion  the diffu- 
sion of the field into the conductor  becomes controlling. 
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The end of the compress ion  cor responds  to z --- ~ .  At this instant 
the field and the flux in the conductor are  

B~ (r) = ~o(~ro2)-I(~'(--~, ~; {~))-'{~ (fro-l) ~(~-') 

Ok(r) = Oo QF (--g, !~; {x))-' I ~0 (rro-') '~ 
(4. i0) 

After  determining 5, the depth of penetration of the field into the 
conductor,  by the relation ~ k ( 5 )  = ~0 we can obtain from (4.10) 

8 = ro~-'; ,  O' (-I~, ~; ~))','~ 
For  large 

Here C =0.577 . . . is Eu le r ' s  constant [3]. It should be noted that the c r i t i ca l  s ize of the cavity r*  
(4.9) f rom which the flux passes  rapidly into the conductor,  and the depth of  penetration of the field into the 
conductor 5 at the end of the compress ion  (4.11) a re  of the same order  of magnitude for g >> 1. 

The power law (4.8) describing the decrease  of the flux in the cavity for ~ >> 1 agrees  with the r e -  
sult cited in [6]. 

5. In order  to find out under what c i r cumstances  se l f - s imi la r  solutions exist in magnetic cumulation 
problems,  the problem of the compress ion  of the field in a cyl indrical  cavity was solved numerical ly.  It 
was assumed that at the s tar t  the field in the cavi ty and in the conductor was uniform and equal to B0, and 
that the radius of the cavi ty was r 0. After  t r ans forming  to the dimensionless var iables  r and 0 defined 
by {1.10) the problem was reduced to the integration of the equation 

OB~ (t++)OBop ~P 0~B = 0 0 p '  (5.1) 

in a cavity with a cut-off angle (Fig. 2) to calculate the field, or  the equation 

0~ 0~ p 0~r = 0 (5.2) 
0 r  ap {~ Op ~ 

to calculate the flux ~ penetrat ing the conductor  to a depth g rea te r  than r (4.1). 

Since difference schemes for solving Eqs. (5.1) and (5.2) a re  stable for any value of AT/Ap  [7], a 
square mesh A~ = Ap was chosen for  the calculation, and the problem was solved on a Minsk-32 computer .  
The mesh var iables  are  related to the var iables  T and p by the equations 

I =  M ( p ~ - - p ) ,  J =  3I'~ 

where 1/M is the mesh size. The coordinate p~ was chosen so that the t ime to close the cavity is small  
in compar ison  with the r i se  t ime of the skin layer  at the depth p . For  g >> 1 this condition gives (p~ - 

i) >> (4g) -i. 

The calculation determined the field and the flux in the conductor and the field in the cavi ty at var ious  
t imes  for g =0.1, 1, 10, 100, and 1000. The small  computer  memory  did not permi t  calculations with a 
step smal le r  than 30 -l ,  so that the calculation is v e r y  crude near  the instant the cavity is closed. For  g > 1 
the solution of Eq. (5.2) for  the flux turned out to be more accurate ,  and for g _< 1 the solution of Eq. (5.1) 
for the field was more  accurate .  The calculated values of the field in the cavity a re  shown in Fig. 3, and the 
field in the conductor at 7 =-0 .14  is shown in Fig. 4. 

A more  accura te  calculation of the flux in the cavity was pe r fo rmed  by using the machine memory  
only for two neighboring lines in t ime, which permit ted  a reduction of the computing step to 500 -1. This 
organization of the calculation was possible only for large ~, since p~ is large when g _ 1 and the ca lcula-  
tion must extend a long way in the spatial variable.  The open curves  of Fig. 5 show the t ime dependence 
of the flux calculated in this way, and the solid curves  are  the se l f - s imi la r  solution (4.8). The solutions are  
joined at zero t ime. It is c lea r  f rom a compar ison of the two solutions that initially the compress ion  of the 
flux dec reases  more slowly in the problem which is not se l f - s imi la r  than in the one which is; toward the 
end of the p rocess  the opposite is true.  This occurs  because at the beginning the field in the problem 
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r162 is not s e l f - s i m i l a r  is uni form in the conduc tor ,  and the re  is no flux leakage f rom the cavi ty .  The 
initial phase  of the c o m p r e s s i o n  of the f ield in this  p rob l em a g r e e s  with the solution of the c o m p r e s s i o n  of the 
flux by a pe r fec t  conductor .  As the field in the cavi ty  i n c r e a s e s  during its compres s ion ,  the gradient  of the 
f ield at the boundary i n c r e a s e s  more  rap id ly  in the p rob l em which is not s e l f - s i m i l a r  than in the s e l f - s i m i l a r  
case ,  and accord ing  to (1.3) th is  leads to a more  rapid  pa s sage  of the flux f rom the cavi ty  at  the end of the 
c o m p r e s s i o n .  

In conclusion it should be noted that in all  the p r o b l e m s  d i scussed  in Sec. 2 and 3 approx ima te ly  the 
s a m e  asympto t ic  behavior  was found for  the depth of penet ra t ion  of the f ield into a moving conductor  for  

>> 1. This  is na tura l  s ince for  l a rge  ~ the t r a n s p o r t  of the field by the conductor  is control l ing.  If the 
field d e c r e a s e s  in the di rect ion ,of motion, the depth of penet ra t ion  of the field is lr/2 t imes  l a r g e r  than 
when the veloci ty  and the f ield gradient  a r e  opposi te ly  di rected.  The sharp  di f ference between the a s y m p t o t -  
ic behav io r  {4.11) of the solution for  the c o m p r e s s i o n  of the field in the cavi ty  and the solut ions of the other  
p r o b l e m s  for  ~ >>1 is r e la ted  to the growth of the field and its gradient  at the boundary as  the cavi ty  is 
c losed.  
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