MAGNETIC FIELD IN A CYLINDRICAL CONDUCTOR
MOVING WITH A VELOCITY PROPORTIONAL TO r-!

E. I. Bichenkov and E. P. Matochkin UDC 538.4

Nonstationary magnetic field problems in a moving conductor are of interest in connection
with obtaining pulsed magnetic fields by magnetic cumulation [1]. The field penetrates into
the conductor as a result of the growth of the skin layer and is carried along with the conduc-
tor. The first mechanism of the interaction of a field with a conductor is called the diffusion
of the field, and the second convection. Five self-similar solutions of magnetic field problems
in a conductor which has a velocity v=q/2 7 r and a conductivity ¢ =const are discussed and

a numerical solution of the problem of the compression of a field in a cylindrical cavity when
the conductor moves toward the axis is presented. One of the self-similar solutions is com-
pared with the numerical solution.

1. In the problems under discussion the magnetic field in a conductor is described by the solution of
the equation

¢z 3B c® { 08B aB
Tns ot (E_q)WT—_W=O (1.1

which satisfies the condition for the continuity of the field at the boundary of the conductor r =r,(t)
Blrar, = B, (t) (1.2)
and the condition for the diffusion of the flux

40, _ [ 0B\

a2\ o r=r, (1.3)

which follows from Ohm's law and the equations of the quasistationary electromagnetic field. The field
B« (t) at the boundary of the conductor is assumed uniform but can depend on time, and &,(t) is the flux in
a cylinder of radius rx(t).

Motion of the conductor away from the axis corresponds to q > 0, and motion toward the axis to g <0,
For a steady source strength the boundary of the conductor is given by

T = (qim=1)'s (1.4)

The time t =0 corresponds to the end of motion toward the axis and the beginning of motion away from
the axis. Thus t>0 in problems on the expansion of a conductor and t < 0 for problems on compression.

In certain problems it is convenient to introduce the flux in the moving conductor

(athatz—n's

®(a,t) =2 S rB(r, t)dr (1.5)

or

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 18-
25, September-October, 1973. Original article submitted March 23, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
Stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
| recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $135.00.

L

617



©

v(a, f) = 2x S rB(r, t)dr (1.6)

“(artatn-n)'s

instead of the field B (r, t).
If the field on the axis does not increase too rapidly (1.5) is used, and if the field and its derivatives
vanish at infinity (1.6) is used. The flux &,  must satisfy the equation

a0 _ 9B dy - @ 3B
G T % Tat T T 2% or (L.7)

Ifr 8B/39r — 0 as r —« it follows from (1.7) that the flux is conserved in an unbounded conductor
(@a_. o= ®,). If the flux in the cavity is denoted by &, (t) and the flux in the conductor by ¥.(t) the con-
servation of total flux means that

Dy (1) + b () = @y (1.8)
In transforming to the self-similar variable
= nr? (g)-! . (1.9)
or to the dimensionless variables
T=1t|g| (wre?)Y, p=rir? (1.10)
the dimensionless parameter
p=oclg|c? (1.11)

equal to half the magnetic Reynolds number appears in all problems.

2. If the expansion of the cylindrical conductor begins at the axis two self-similar problems can be
formulated: the conductor expands in a static field By; the conductor has a superconducting sheath and the
flux in it is conserved. In both problems the solution depends on the single dimensionless variable xdefined
by (1.9); on the boundary of the conductor x=1. For the expansion of a conducting cylinder in a static field

B(z) = By (i gt da)"ings a

The field is zero on the axis of the conductor.
The cross section S of the conductor into which the field has penetrated is found from
"o

BoS = 2n S rB(r, t) dr = thB(x)dz

0

to be

S = nr,? (p.e*" S Ep-1e-0e dg‘)—1 2.1)
0

For large u the integral in (2.1) can be approximated by Laplace's method [2], and for small u by
expanding the exponential in powers of u§

S = angd @t (3> 1),
S=aurdl—p <)

from which the depth of penetration of the field into the conductor is

8 = ry @up)-"  (p>1)
bmr, (1 —ph) <)
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In the problem of the expansion of the cylinder in a superconducting sheath the flux and field are
respectively

O(z) = (Sgue—w ) Sgye—az dt

1
B(@) =5 dr = ( E*‘e“” dE | ) Y gt

The field vanishes on the axis and is maximum on the boundary of the conductor.

The cross section of the conductor occupied by the field is found from B,S= &;, where
!
B* = ¢)0 (nrtzs gl"g-}"ﬁ dg)—l et
0

is the field on the boundary of the conductor. It is easy to see that

1
S = nriet S Ele+E g

[}
and the methods described earlier give the estimates

B, = @ (nr,%)-! (2n-p)"

§ & rynth Buyt (0> 1)

B, =~ @, (ur,t (1 + 27 p)
d=r, (1 — (21 )% <)

3. If the expansion begins from the axis two self-similar problems in x can be formulated: at the
beginning the field in the conductor was everywhere static and equal to B,; at the beginning there was no
field in the conductor and the flux $;, was concentrated on the axis.

In the first problem the field in the conductor is

B (.‘.C) = Bo —_ B*p.e!" gl"—le'l“i d§

Rer8

and the field in the cavity

1

B,=B(l) = B, (1 + pe E,*“le-*‘-‘»d{;)- (3.1)

Lol I ¥

is constant in spite of the motion of the conductor,
For large u Laplace's method gives
By = By Cn-'p=Y)"  (n>1)

Making the substitution u § =t in (3.1) leads to p~H [ (u) — v (u, u)], and after substituting the ex-
pansions of the gamma function T (z) and the incomplete gamma function v (a, z) for |z] <« 1 [3] we obtain

By =By (1 +plap) L)

Direct calculations show that the decrease of the flux in the conductor is equal to the flux in the
cavity, i.e.,

2t \ r(By— B(r,t))dr = ary?B,

Y]

Thus the total flux is conserved in this case.

The cross section of the conductor from which the flux passed into the cavity is found from the equa-
tion 8(Bj—B,) = rr*zB*. From this the thickness of the current layer on the surface of the expanding
cavity is estimated as
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8~ 27ir, BBt m r@mp)y (3> 1)
b= ra(Ba Bo— By (—plapyh  (<1)

The problem of the diffusion of the flux from an expanding cavity is discussed in [4]. It turns out that
not only is the total flux conserved, but for v =q/(2 7 r) both the flux in the cavity and the flux in the conduc-
tor are constant. Thus in the expansion of a cavity in a conductor the flux at the start is redistributed be-
tween the cavity and the conductor and then does not change.

Calculations for the flux in the cavity give

Dy = Oy (1 — (2-'ap-1))  (p>1)
O, =0u(t+puhhp) L)

The cross section of the current layer at the edge of the cavity is

S = (D — ®,)B,! = ar,? (B — @,)D,!
and its thickness is

8 = rath (Bt (> 1)
S rgt (p<<H)

4. Magnetic cumulation describes the problem of the compression of the flux in a cylindrical cavity.
Introducing the flux in the conductor
V()= 2n_S rB(r, t)dr @.1)

T
and assuming that it can be written in the form

q’ (ra t) = (_t)B P (2)9
z=pz=o0|g|c?n* (¢

it is easy to show that ¢(z) must be a solution of the confluent hypergeometric equation with the parameters
~p and p [5]
29" + (p— 29" + P =0 4.2)
satisfying the condition
pe' (w) = @ (1) ' (4.3)
on the boundary of the cavity z= .

In deriving Eq (4.2) it is assumed that the field vanishes at infinity. Therefore of the two linearly
independent solutions of (4.2) we select the one whose asymptotic behavior at infinity is described by a
power of z and discard the solution with the expotential asymptotic behavior, i.e.,

P (z) =AY (—B, w5 2) 4.4
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where ¥ (@, ¢, z) is given by the integral {5]
1 J e
¥ (2,6 2) = 15 Se-ﬂza-l(i + 8714, Rea>0 (4.5)

0

The substitution of (4.4) into the boundary condition (4.3) and the transformations connected with the
change of parameters in ¥ (a, ¢, z) leads to an equation for 8 as a function of

A—P2—B~—p ¥C—8 wwW=021—-P+p0—B—wWI¥({—B, u w (4.6)

Using the previously described technigue to estimate the integral (4.5) we obtain the asymptotic forms

= (@a-Tu-N) (u>1)

4.7
p=1—p <) @

Equation (4.6) was solved on a Minsk-32 computer for arbitrary values of u. The results of these
calculations are shown in Fig. 1.

The solution shows that if at a time t; the radius of the cavity was r, =(qt, /1r)1/2 and the flux in it was
&, then at any other time t the flux in the cavity will be
Gy = @ (rere™)® = @, (22,7)° (4.8)
and the field will be
B, = @, (nre®) Y (rre=1e-D
Since 0 < f = 1, in compression (r, — 0) the flux passes completely into the conductor, although the

field in the cavity increases indefinitely; i.e., leakage of the flux cannot limit the value of the field obtained
in the compression of the flux in the cylindrical cavity.

It is clear from (4.7) and (4.8) that for large u the flux in the cavity decreases slowly at first and only
toward the end of the compression decreases sharply to zero. The time t* for the flux to escape, and the
critical size of the cavity rb"‘ can be estimated from the condition

do, ol

—dat t=ts &
which combined with (4.8) gives
z* = toﬁl/(l‘a)’ r¥ = roﬁ 1/2(1-3)
For large u it follows from (4.7) that
~ —1,,~1)Ys
t* =ty (2rn-1p-Y) 4.9)
o Q) (5S> 1)

A consideration of the compression of the flux in the cylindrical cavity shows that up to the time t *
the transport of the field by the conductor predominates, and at later stages of the compression the diffu-
sion of the field into the conductor becomes controlling.
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The end of the compression corresponds to z — . At this instant
the field and the flux in the conductor are

By (= @®y(ar®)-Y¥(—B, pi W)~ pp? (rrg-H)*e-n
Op(r)= Do (¥ (—B, p; W) p® (rrg?)®

After determining 6, the depth of penetration of the field into the
conductor, by the relation &y (6)= &; we can obtain from (4.10)

(4.10)

8 = rop="* (¥ (—B, p; p)s

s For large u
Fig. 5 3~ rgexp [_ Miz_iﬁ] @)yt @S> 4.11)

Here C=0.577 . . . is Euler's constant [3]. It should be noted that the critical size of the cavity r*
(4.9) from which the flux passes rapidly into the conductor, and the depth of penetration of the field into the
conductor 6 at the end of the compression (4.11) are of the same order of magnitude for p > 1.

The power law (4.8) describing the decrease of the flux in the cavity for u > 1 agrees with the re-
sult cited in [6].

5. In order to find out under what circumstances self-similar solutions exist in magnetic cumulation
problems, the problem of the compression of the field in a c¢ylindrical cavity was solved numerically. It
was assumed that at the start the field in the cavity and in the conductor was uniform and equal to B;, and
that the radius of the cavity was r,. After transforming to the dimensionless variables 7 and p defined
by (1.10) the problem was reduced to the integration of the equation

22_(1+L)£_1i‘?_=0 (5.1)

¥ _ W e (5.2)

to calculate the flux ¥ penetrating the conductor to a depth greater than r (4.1).

Since difference schemes for solving Eqs. (5.1) and (5.2) are stable for any value of A7 /Ap [7], 2
square mesh A7 = Ap was chosen for the calculation, and the problem was solved on a Minsk-32 computer.
The mesh variables are related to the variables T and p by the equations

I=M(pws—p), J= M

where 1/M is the mesh size. The coordinate p,, was chosen so that the time to close the cavity is small
in comparison with the rise time of the skin layer at the depth [ For yu > 1 this condition gives (o —
1) > (4w~ '

The calculation determined the field and the flux in the conductor and the field in the cavity at various
times for g =0.1, 1, 10, 100, and 1000. The small computer memory did not permit calculations with a
step smaller than 30~1, so that the calculation is very crude near the instant the cavity is closed. For u>1
the solution of Eq. (5.2) for the flux turned out to be more accurate, and for u =< 1 the solution of Eq. (5.1)
for the field was more accurate. The calculated values of the field in the cavity are shown in Fig. 3, and the
field in the conductor at 7 =—0.14 is shown in Fig. 4.

A more accurate calculation of the flux in the cavity was performed by using the machine memory
only for two neighboring lines in time, which permitted a reduction of the computing step to 500~1. This
organization of the calculation was possible only for large u, since p is large when pu < 1 and the calcula-
tion must extend a long way in the spatial variable. The open curves of Fig. 5 show the time dependence
of the flux calculated in this way, and the solid curves are the self-similar solution (4.8), The solutions are
joined at zero time. It is clear from a comparison of the two solutions that initially the compression of the
flux decreases more slowly in the problem which is not self-similar than in the one which is; toward the
end of the process the opposite is true. This occurs because at the beginning the field in the problem
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which is not self-similar is uniform in the conductor, and there is no flux leakage from the cavity. The
initial phase of the compression of the field in this problem agrees with the solution of the compression of the
flux by a perfect conductor. As thefield in the cavity increases during its compression, the gradient of the
field at the boundary increases more rapidly in the problem which is not self-similar than inthe self-similar
case, and according to (1.3) this leads to a more rapid passage of the flux from the cavity at the end of the
compression.

In conclusion it should be noted that in all the problems discussed in Sec. 2 and 3 approximately the
same asymptotic behavior was found for the depth of penetration of the field into a moving conductor for
4 > 1. This is natural since for large u the transport of the field by the conductor is controlling. I the
field decreases in the direction .of motion, the depth of penetration of the field is 7/2 times larger than
when the velocity and the field gradient are oppositely directed. The sharp difference between the asymptot-
ic behavior (4.11) of the solution for the compression of the field in the cavity and the solutions of the other
problems for y >1 is related to the growth of the field and its gradient at the boundary as the cavity is
closed.
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